code-for-a-living June 12, 2021

# Level Up: Linear Regression in Python – Part 4

In the fourth lesson of the series, we’ll talk about the matrix representation of the linear regression problem. In the process, we’ll discuss the basics of matrix multiplication. We’ll also see how this mathematical understanding can prepare us to make sense of error messages that we might encounter when fitting a model in Python. Here…

In the fourth lesson of the series, we’ll talk about the matrix representation of the linear regression problem. In the process, we’ll discuss the basics of matrix multiplication. We’ll also see how this mathematical understanding can prepare us to make sense of error messages that we might encounter when fitting a model in Python.

Here are some Stack Overflow questions related to the work we did in today’s session:

If you want to ask any questions or provide feedback on the lesson, you are welcome to leave a comment on the YouTube recording of this lesson. If you’d like to watch a session live, follow the Codecademy YouTube channel. We’ll be live again on Tuesday, June 15 at 11am EDT to discuss polynomial and interaction terms, which can be used to build more flexible regression models. You can join that session here.

Finally, if you want even more linear regression content, you can sign up for the Linear Regression in Python interactive course this series was based on. This course was developed by Sophie and has many more quizzes, projects, and helpful nuggets that we can’t fit into our streams!

Tags: , , , The Stack Overflow Podcast is a weekly conversation about working in software development, learning to code, and the art and culture of computer programming.

## Related code-for-a-living June 6, 2021

## Level Up: Linear Regression in Python – Part 3

In the third lesson of the series, we’ll implement our first linear regression model with multiple predictors (this is called “multiple linear regression”). As an example, we’ll use a simulated dataset to predict student quiz scores. In the process, we’ll again practice our graphing and Python skills. Here are some Stack Overflow questions related to… code-for-a-living May 22, 2021

## Level Up: Linear Regression in Python – Part 1

Linear regression is a machine learning technique for modeling continuous outcomes. It is used for both prediction and data analysis in a variety of different fields. It is also the basis for a number of other machine learning models, including logistic regression and poisson regression. For anyone who is interested in learning more about data… code-for-a-living June 19, 2021

## Level Up: Linear Regression in Python – Part 5

In the fifth lesson of the series we’ll learn how to build more flexible linear models by adding interaction and polynomial terms. We’ll fit and inspect our models both mathematically and visually to understand how they work. In the process, we’ll continue to practice our Python skills and discuss some of the merits (and drawbacks)… code-for-a-living July 3, 2021

## Level Up: Linear Regression in Python – Part 7

In the seventh lesson of the series we’ll discuss some methods for comparing linear regression models. In the process, we’ll learn about the problem of overfitting and investigate some of the pros and cons of various evaluation methods (such as R-squared, adjusted R-squared, log likelihood, AIC, and BIC). We’ll also continue to practice our Python…