Detecting errors in AI-generated code
Ben chats with Gias Uddin, an assistant professor at York University in Toronto, where he teaches software engineering, data science, and machine learning. His research focuses on designing intelligent tools for testing, debugging, and summarizing software and AI systems. He recently published a paper about detecting errors in code generated by LLMs. Gias and Ben discuss the concept of hallucinations in AI-generated code, the need for tools to detect and correct those hallucinations, and the potential for AI-powered tools to generate QA tests.